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Finite-size effects and bounds for perceptron models 

B Derrida, R B Griffithst and A Prugel-Bennett$ 
Service de Physique Thbriqueg. CEN-Saclay, F-91191 Gif-sur-Yvette Ceda, France. 

Received 26 March 1991 

AblncL  In lhis paper we consider two main aspsln of the binary perccptron problem: 
the maximal capacity when random pal tem are stored (model A), and its generalhation 
ability (model B). We have extended previous numerical estimates of critical capacilies 
and studied thermal properties of systems of small sizes to lest recent replica predictions. 
We have also considered some simpler versions of thest models. The discrete spherical 
vemions can be salved exactly using Gardner’s replica calculation for the spherical model 
and are shown to give a rigorous upper bound and lower bound on the capacities of 
models A and B. respectively. Iby vemions of models A and B are soivcd in detail and 
provide information which is useful for interpreting the Bnile-size eEeciects present in the 
numerical studies of models A and B. 

1. Intmduetion 

Ever since it was realized that tools employed for studying disordered systems could 
be applied to models of neural networks, the investigation of such models has become 
a part of theoretical physics (1, 21. An important question is whether a given neural 
network architecture can perform tasks such as storing information, classifying it, and 
generalizing from examples. The simplest architecture which has been proposed is the 
perceptron [3, 41. In this paper we are concerned with two aspects of a perceptron: 
its maximal storage capacity (model A) and its ability to generalize (model B). 

The problem of the optimal capacity of the perceptron can be formulated in its 
simplest version as follows: given P input patterns Sr, 1 < p < P and 1 < i < N, 
and P outpun T’, is there a configuration of synaptic weights or couplings J i ,  
1 < i < N, such that each input pattern gives the desired output, i.e. 

for every p? As the number P of patterns increases while the number of couplings 
N is fixed, it becomes harder and harder to find a choice { J i }  which satisfies (1.1). 
The maximal capacity P, is the maximum number of patterns which can be stored, 
in the sense that for P > P, there is no solution to (1.1). 
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4908 B Derrida et a1 

This maximal capacity depends on the method used to choose the patterns {Sr} 
and the targets {P}. If they are chosen at random in the sense that S: and T’ 
are +1 or -1 with equal probability and have no correlations, Cover [SI showed that 
the maximal capacity is 

P, U a , N  

for large N ,  with a, = 2. This result was rederived by Gardner [ 6 , 1 ,  who developed 
a replica approach by which the volume in the space of { J i }  with xi  J,? = N of those 
couplings satisfying (1.1) could be calculated for P < 2 N ,  as well as the minimum 
fraction of errors [8] for P > 2 N .  Thi replica approach was later extended to 
several other situations [9-171. 

A serious difficulty arose when this replica procedure was applied to the case of 
binary couplings Ji = fl, which we shall call ‘model A‘. It gave ac = 4/?r U 1.27, 
whereas one can prove [8, 18, 191 that a, < 1, and numerical simulations [18-221 
yield estimates for a, in the range 0.7 to 0.85. Since this calculation assumes replica 
symmetry, a possible source for this erroneous ac was replica symmetry breaking. 
However, it was shown that the replica symmetric solution was stable for a < 1.015 
[19], excluding the possibility that the true a,, which cannot exceed 1, occurs at the 
limit of stability of this solution. The sole remaining possibility within the replica 
approach was a discontinuous transition from a replica symmetric to a replica non- 
symmetric saddle point. Krauth and M6zard 1191 found such a transition [23] and 
realized that it was similar to the one which occurred in the random energy model 
[24], in which the entropy vanishes at the transition temperature at the same time 
as the replica symmetric solution remains locally stable [Z]. They thereby obtained 
a value of a, = 0.833. One of the motivations of the present paper was to use 
numerical simulations to test this prediction of the Krauth and M6zard theory and to 
improve previous estimates of the critical capacity [18]. 

Besides the maximal capacity, another property of interest for neural network 
models is their ability to generalize [18, 26-32]. For the binary perceptron, the 
problem of generalization (model B) can he formulated as follows [U]: the couplings 
J, are again f l  and the input patterns {S,!’} are chosen at random. However, the 
{P} are now by definition the values given by a ‘teacher’ {ji}, which is simply 
one possible choice of couplings (e.g. j i  = +1 for all i). Just as in model A, 
the number of configurations satisfying (1.1) for this choice of {P} decreases as P 
increases until a critical value P, U ac N is reached, above which the only solution 
is { J i }  = { j i } .  For P < P, the generalization of the network is imperfect, because 
there are solutions { J i }  # {ji} which give the same results as the teacher for the 
P specified patterns which have been ‘learnt’, but different results for patterns not 
yet learnt. By contrast, for P > P, the only solution to (1.1) is the teacher itself, 
which thus will (by definition!) give correct results in all cases. A rigorous upper 
bound of a, < 1.448 as well as numerical extrapolations to a, U 1.35 have been 
obtained previously [18]; both substantially exceed the value of ac = 1.245 obtained 
[26, 271 using the replica approach, which also predicts a freezing transition at finite 
temperature for a > aC. 

The goal of the research reported here was to improve the existing estimates for 
the critical capacity for models A and B, and to use numerical simulations to test the 
Krauth-M6zard [21], and Gyorgyi [26, 271 predictions for the nature of the freezing 
transitions. ’Ib this end, it turns out to be very useful to introduce several variants 
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of models A and B, as described in $2: the .9/ are allowed to have a continuow 
Gaussian distribution (‘Gaussian patterns’), and the 2 N  possible couplings {Ji} can 
be chosen at random on the sphere in W N  (‘discrete spherical couplings’). For all 
these models, we show that the problem of maximal capacity can he formulated in 
terms of the distribution of points or objects in various cells: for a > ac of model 
A, most of the cells are empty, and for a > a, of model B, almost all occupied cells 
are occupied by a single point. From this perspective, models A and B are different 
aspects of a single problem. The discrete spherical models, while rather artificial from 
the point of view of neural network& are -interesting in that the A and B transitions 
can be found numerically from the results of Gardner’s replica calculations, and these 
values are then upper and lower bounds respectively, as shown in §S, of the critical 
capacities of the model with binary couplings and Gaussian patterns. 

In addition we introduce, in 53, two simplified or ‘toy’ models corresponding to A 
and B, in which the energies of the different configurations (defined as the number of 
errors occurring in (1.1)) are independent random variables. These models can then 
be solved exactly, and the finite-size effects turn out to be useful in interpreting the 
numerical results presented in 54. The latter are of two types: estimates of critical 
capacities which extend previous results to larger values of N, and calculations of 
thermal properties for systems of finite size which, in conjunction with the results of 
33, allow a test of the replica prediction for models A and B. Our conclusions are 
summarized in 56. 

2. ltansitions in the discrete spherical models 

The perceptron model considered here can be characterized as follows. The P 
patterns correspond to a Px N matrix S’ with /L = i ,  ‘2,. . . , P and i = i ,  2 , .  . . , N. 
A set of couplings J is a vector with N components J i ,  and for the fith pattern gives 
rise to an output 

which takes values 411. Let the target T be a P-component vector T’ = *l. The 
energy E attributed to a set of couplings J is the number of patterns for which the 
output differs from the target, that is 

T V ) > .  

Using these energies, a partition function [SI analogous to that used in statistical 
mechanics can be defined: 

(2.3j 

We shall assume that the elements of the pattems are chosen randomly: the N x P 
numbers S: are independent identically distributed random variables. For Ising 
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puffem, each S,!’ is +1 or -1 with equal probability. For Guussiun paitem, each S,!‘ 
is chosen from a Gaussian distribution with zero mean. 

The term binary couplings will refer to the m e  in which each Ji is +1 or -1 and 
sphericul couplings when the Ji are real numbers satisfying 

N 

N .  
i= l  

A thud possibility is that of discrete sphericul couplings in which a set of eNb couplings 
are chosen randomly as vectors on the sphere defined by (2.4). ’Qpically we shall 
assume that b = In 2, giving the same number ( Z N )  of possibilities as the binary case. 

The two types of patterns and the three kinds of couplings give rise to a total of 
six distinct but related models which can he studied for large N as a function of the 
parameter 

a = P I N .  (2.5) 

In the case of king patterns and binary couplings we shall consider only the case where 
N is odd so that the sign in equation (2.1) is well defined. It has been asserted [21], 
on the basis of replica studies, that king and Gaussian patterns give rise to identical 
results as N - M. Nonetheless, it is useful to distinguish them because the behaviour 
for finite N will be different, and because a certain inequality (see fS) relating the 
binary and discrete spherical couplings can be proved for Gaussian patterns but not 
(at least by the same methods) for Ising patterns. 

The following perspective in these models is sometimes helpful. Formula (2.1) 
assigns each set of couplings J ,  each of which can be thought of as an object or 
‘particle’, to one of 2 p  categories or ‘boxes’ labelled by the P numbers R”. Thus 
a particular set of patterns Sf gives rise to a histogram consisting of the number of 
particles in each box. The target T is a particular box which has zero energy, while 
the other boxes are assigned energies relative to T by means of (2.2). The partition 
function (2.3) is a sum over particles, each assigned the energy of the box in which it 
is located. Note that as long as the distribution for each Sr is symmetrical about zero 
the choice of the target isarbitrary in that any choice will yield the same statistics. 
This fact can be used to speed up numerical studies, because once a histogram has 
been constructed, sets of energies can he computed for various targets. (The results 
are correlated, but not biased, and by using several histograms corresponding to 
independent choices of pattems, it is possible to make error estimates by standard 
procedures.) 

Both models A and B are determined by the same histogram, and thus can be 
thought of as two aspects of a single model. The difference is that for model A, 
any one of the 2 p  boxes may be chosen at random to define the zero of energy, 
whereas for model B, one of the particles is chosen at random (it is, by definition, 
the ‘teacher’), and the box containing it is assigned the energy zero. The critical a 
for model A, denoted by a,,, is the value such that for a < aA a box chosen at 
random will contain at least one particle, whereas for a > aA the typical box will be 
empty. The critical a for model B, denoted aB, has the property that, for a > aB, 
almost every particle is alone in the box which it occupies, whereas for a < ag it 
almost certainly has the company of at least one other particle in the same box, i.e. 
a ‘student’ is able to yield the same result as the ‘teacher’. These definitions can be 
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made more precise by appropriate uses of the phrase ’with a probability approaching 
one in the limit as N tends to infinity’. Unfortunately there are no proofs (known 
to us) that the desired limits exist, or that aA and aB are well defined in the Sense 
that there exists no intermediate phases: for example, a range of (I values for model 
A in which the probability that a typical box is empty is neither zero nor one. 

A geometrical representation of the ‘boxes’ introduced above is obtained by h a g -  
ining that for each p,  the s,!’ are the components of a vector normal to  a hyperplane 
h. p z  .v-dimengbp~! sprz B N .  T)Ic p !ypq!.fieg .nrrqaafi$g p natternq t-------- 

cut this space into a set of 2 p  convex regions (some may have zero volume), and 
these regions intersect the sphere (2.4) in a corresponding number of cells, with the 
property that all the points in a particular cell are, by (2.1), mapped into the same 
set of outputs. Thus these cells correspond to the ‘boxes’, while the ‘particles’ in a 
particular box are those sets of couplings J corresponding to points on the sphere 

In the case of the discrete spherical model, transitions A and B can be discussed 
in terms of the volumes of these cells, where ’volume’ denotes the appropriate rota- 
tionally invariant measure on the sphere (2.4). (For example, for N = 3 and P = 3 
the cells are spherical triangles, and the ’volume’ is the corresponding area on the 
surface of the sphere.) It will be convenient to  assume this measure is normalized, 
so that if vR is the volume of the cell labelled by R = { RP},  

(2.4) inride the Eel! in question, 

C U R  = 1 .  
R 

A cell R will be said to be of ‘size’ k provided its volume lies in the intelval 

where Ak is a small positive number, and k takes on a discrete set of values de- 
termined by A k .  Let e x p { N  c(IC)) be the number of cells with volumes in the 
interval (2.7). Of course, c( IC)  is a random variable which depends on the choice 
of hyperplane normals {S,!’). We shall assume that when N is large, the typical 
c(.k)-the one occurring with high probability-approaches some limit, of which a 
plausible form is sketched in figure 1. The normalization condition (2.6) then reads 

and, assuming the sum is dominated by its maximum term, we conclude that 

where (see figure 1) kB is the value of k which maximizes c( k )  + k, the point where 
dc/d k = -1. 

Since in the discrete spherical model a set of eiGb points or ‘particies’ are chosen 
randomly on the surface of the sphere, the average number v ( k )  falling into a cell 
of size k will he proportional to its volume: 

(2.10) N b e N k  = e N ( k - r r )  u ( k ) = e  
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F@re 1. Sketch of the distribulion of cell sizes. 

where n = -b is a sort of negative chemical potential. Its significance is that cells 
of size k < K are essentially all empty, while those with k > IC contain a large 
number of the eNb  particles. Note that the vast majority of cells have a size k k,, 
corresponding to the maximum of c( k), figure 1, whereas almost all of the volume 
is associated with cells of size k ES k,. Consequently the vast majority of particles 
(whatever the value of n) will be in cells with k 

Now consider what happens if, for a given set of cells, K increases continuously 
(corresponding to a decreasing number of particles) from a value less than k, to a 
value greater than k, (figure 1). For IC < k,, all cells (with a probability approaching 
1) will contain at least one particle, whereas for K > kl there will be a large number 
(though a negligible fraction of the total) which are empty. For K > k,, almost all 
the cells are empty. Thus K = k, corresponds to the A transition for this model. 
Similarly, as the vast majority of particles are in cells with k E kB, for K < kB most 
particles are in cells containing other particles, whereas for K > k, most are isolated 
in separate cells. Thus K = k, corresponds to transition B. Finally, as K passes k, 
the last cases of more than one particle in a cell disappear. 

The foregoing discussion needs minor modifications if some of the cells have zero 
volume, and are thus not represented by c ( k ) .  If their number is a small fraction of 
the total, the only modification is that when IC passes k, the 'transition' involves only 
those cells with non-zero volume. (Of course it is also possible that kl is at -CO, so 
there is no transition of this type in any case.) However, if the majority of cells have 
zero volume, there can obviously be no A transition as IC varies, even if c ( k )  has a 
maximum. There can still be a B transition, described in the same way as previously. 

The same considerations apply if b is held k e d  and a varied, for changing a will 
change the (typical) distribution c ( k ) .  The A transition occurs when K = -b  = k,, 
which means that the volume of the typical cell is e -Nb ,  or 2TN in the case b = In 2. 
Gardner's replica calculation indicates that this value occurs at &,, = 0.847. (This 
value is obtained by finding the value of a for which the C( q )  in [7, equation (23)] 
is equal to - In  2. This has been previously calculated by Krauth and Mkzard [19].) 
The B transition will occur when n = -b = k, = - c ( k , ) ,  which is to say, for that 
a for which c (k , )  = In 2. The corresponding a can be determined from Gardner's 
replica calculation of the moments 

k,. 

(U") = 2 4  C ( u ; )  (2.11) 
R 



Finite-size effects and bounds for perceptron modeh 4913 

of the cell-size distribution. Here v is the volume of some specific cell (by symmetry 
it does not matter which cell is chosen), and the angular brackets (. . .) indicate an 
average over all possible sets of the P patterns. 

Let us define g(n) by 

(2.12) 

for a typical distribution c( k). Replacing the sum by its maximum term, we have 
g( n) related to c( k) by a Legendre transform, 

g ( n )  = mtx[c(k) + nk]. (2.13) 

Assuming c( k) is differentiable, this tells us that 

g ( n )  = c ( k )  + nk (2.14) 

where k is the solution of 

n = -c‘ ( k) (2.15) 

and, by differentiating (2.14) with respect to n, 

IC = g ’ ( n ) .  (2.16) 

NOW ks is the value Of k where c’ (k)  = -1% This c o r r e s p d ~ ,  by (2,15), to E. = l j  
and hence, by (2.9) and (2.16), to 

~ ( k , )  =-IC, = -g‘(l) .  (2.17) 

Consequently the a corresponding to the transition B for the discrete spherical model 
is the one for which g’(1) = -In 2. 

Note that g ( n )  is defined, (2.12), for the typical case, whereas the replica calcu- 
lation yields g( n) defined by 

(2.18) 

Since ER U; is non-negative, its typical value (that achieved with high probability) 
cannot be larger than its average value times a factor very close to one, although it 
might be much smaller. 

As a consequence one has 

Y,’”, X l n i  F \ Y,.”,‘ n l n i  (2. I?) 

In addition, the normalization condition (2.6) tells us that 

Q(1) = g(1) = 0. (2.20) 
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As a consequence of (2.19) and (2.20) 

G'(1) = g'(1) (2.21) 

assuming the derivatives exist. 
The nth moment of the volume (U")  was calculated by Gardner [7, equations 

(14)-(171. Assuming the replica symmetric ansatz, which allows analytic continuation 
of (U") to non-integer n, yields the formula 

log(v") 1 1 G(n)= - = - ( n - l ) l o g ( l - q ) + - l o g ( l + ( n - 1 ) q )  
N 2 2 

where 

D z = e  - 2 l Z d "  H(x)  = lm Dz fi 

(2.22) 

and where q is the Edwards-Anderson parameter given by the fixed point equation 

4 =  
n(n - 1)q 

2[(n - l ) q 2  t (2  - n ) q -  11 

(2.24) 

Using this equation, one finds that g'(1) = -1112 when = 1.197, which is 
therefore the critical capacity of the discrete spherical model B. 

The replica calculation applies equally to king or Gaussian patterns, and thus 
(assuming it is correct), the values of &La and given above for the discrete 
spherical model are also valid for both cases. 

The notion of cell-size distribution can also be employed in the case of binary 
couplings by defining the 'volume' of a cell as the number of hypercube vertices (J 
with J ,  = * l )  which it contains, dividing by 2N to ensure normalization (2.6). This 
new definition gives rise to a larger number of empty cells than in the preceding case. 
The A transition occurs again, at the value of oi at which k,, the value of k where 
c ( k )  has its maximum, is equal to -1112 and the B transition when .(leB) is equal 
to In 2. 

3. Toy models A and B 

In this section we introduce and solve two simplified models: toy models A and B. 
These models are simplified versions of the models A and B with binary couplings 
and king pattems introduced in the previous section. Their main simplification is that 
the energies of the different configurations are independent random variables. This 
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simplification allows one to calculate the free energy exactly in the thermodynamic 
limit (N -+ CO) as well as finite-size corrections in approaching the limit. 

These solutions can serve as a guide to  interpreting the numerical results obtained 
for other models (defined in 52) which are too complicated to be solved exactly. These 
toy models also provide bounds on the free energy of the true models A and B defined 

The reason for these bounds is the same as for other random energy models [18, 
in 52. 

241 and can be explained as follows: the partition function Z is always given by 

E 

where N( E) is the number of configurations at energy E. However, one is interested 
in the value Z,,, of Z in a typical case, one which occurs with a high probability, 
say 1 - e, wherd; is a small number. lb calculate this one needs to  know the typical 
value, Ntyp( E), rather than the average (N( E)). Because N (  E) is non-negative, its 
average can obviously not be much smaller than its typical value 

where, if we want to be precise, the right-hand side can be multiplied by (1 - E ) .  

And since N( E) is an integer, Ntyp( E) will be 0 if (N( E)) is small compared to 1. 
In the corresponding toy model, the 2N configurations are independently assigned 

energies at random (as described below) in a manner which makes the average 
Nt,,(E) equal to (N( E)) for the corresponding real model. However, the typical 
Ntcy(E)  is close to its average value 1241 when the latter is large compared to 1, 
making (3.2) an approximate equality, whereas in the true model the two sides can be 
very different, with, for example, the average (N( E)) quite large even when Ntyp( E) 
is zero. As a consequence 

Ntyp(E) <NtOY(W (3.3) 

in the large-N limit. (The seeming contradiction with the fact the sum over E is 
2N in both cases is disposed of by noting that Ntyp( E) can exceed Ntoy by a small 
fraction at energies where both quantities are exponentially large and essentially 
equal.) Hence one has 

N-' In Ztyp 6 N-' In Z,, (3.4) 

in the large-N limit, which means that the free energy (multiply both sides of the 
inequality by -T) of the toy model is a lower bound for the true free energy and the 
toy ground state, a lower bound for the true (typical) groundstate energy. 

Another consequence of (3.3) is that 

a , ( t rue)  < a d t o y )  (3.5) 

because aC is the largest value of a for which N ( 0 )  
in model B. 

1 in model A, or N ( 0 )  2 2 
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3.1. Toy modelA 

3.1.1. Definifion and rhermodynamic properfies. In toy model A the output RM for 
each pattern and for each of the Z N  configurations {.Ti} is chosen at random, so that 
the energy E of each configuration is a random number chosen with probability 

where 

( N ( E ) )  = 2 N - P  ( E )  (3.7) 

is the average for the true model A with binary couplings and king or Gaussian 
patterns. As explained above, the typical value of Ntoy(E)  is 0 for ( N ( E ) )  substan- 
tially less than 1 and equal to (N( E)) when the latter is large compared to  1. One 
can show that Ntoy( E) has a distribution which is approximately Poisson [33], and 
the values for different E are approximately independent. (They are not completely 
independent, because their sum is Z N . )  

Now let 

e = E / N  (34 

be the energy per coupling, and define 

InNtYp( N E )  
S ( E )  = j-im 

N-CC N (3.9) 

which, by using (3.7) and applying Stirling's approximation, gives 

. (e )  = ( 1  - a ) I n 2  + u l n a  - e h  e -  (a - c ) l n ( a -  e). (3.10) 

In view of the preceding remarks, we see that s( e) is the (microcanonical) entropy per 
coupling whenever it is non-negative; when the right-hand side of (3.10) is negative, 
Ntyp for the corresponding energy is 0 and s is -CO. In particular, for a < 1, . ( e )  
is positive for all E a 0, implying that the E = 0 ground state has a finite entropy. 
This entropy vanishes linearly in ( 1  - a )  as a approaches its critical value, 1, from 
below, similar to the Krauth and Mezard prediction [19] for the behaviour of the true 
model A (where the critical value of a is, of course, less than 1). For a > 1, on 
the other hand, there is a ground-state energy in the range 0 < E< < a / Z  where the 
right-hand side of (3.10) vanishes. 

The temperature T is given by the usual formula 

1/T = ds(e)/dE (3.11) 

as iong as .(€j 2 0, -",sing this one finds Khat, for a > 1, tiir. eiiuopy vrii$'ies ai a 
critical temperature T, related to  a through 

(3.12) 
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Alternatively the thermodynamic properties can be obtained from the (typical) pani- 
tion function for the toy model-we hereafter omit the subscript 'toy'-which is 

(3.13) In Z 
N 
_ -  - (1-o l ) ln2+uln( l+e-"T)  

for T > T, (including all T for a < l), and 

In Z -a (3.14) 

for T < T, and n > 1. At T = T,, the specific heat drops discontinuously to zero 
and for T < T, the system is in a frozen state with constant (ground-state) energy 
and zero macroscopic entropy and specific heat. This is the same behaviour observed 
in the random energy model [24], which differs from the toy model A (and toy model 
B) mainly in the fact that in the former E is a continuous variable. 

3.1.2. The critical capacity a, of toy model A. The critical capacity ac for a perceptron 
of finite size N can be defined in the following way [18]. Assume the target is TP = 1 
for all p. (Any other choice of target will, of course, give the same result.) One 
starts with 2N configurations, and as each pattern is added, those configurations 
which do not give the correct output, RJ' = 1, are discarded. If there are still some 
configurations remaining after P, patterns, but none after P,+1 patterns, the number 
of stored pattems is defined as P,. Clearly P, is a random variable depending on 
the patterns Sr, and we define the critical capacity 

(3.15) 

in terms of its average over the corresponding probability distribution. 
An equivalent expression can be obtained by introducing random variables 

yl ,  yz, . . . defined as follows: yp = 1 if, after P patterns have been added, there 
are still some allowed configurations, and 0 if there are no allowed configurations. If 
the number of stored configurations is Pc, then, obviously, yp = 1 for 1 < P < Pc, 
and yp = 0 for P > P,. In other words 

m 

p c  = c Y P  
P=l 

and, consequently, 

(3.16) 

(3.17) 

Note that, because the patterns are all chosen independently, (yp) is simply the 
probability that given any P patterns (not necessaty the first P) ,  there is at least one 
of the 2 N  configurations which gives R@ = 1 for each of these patterns. 

For toy model A, the output for each pattern and for each configuration is chosen 
at random. Thus the probability that a particular configuration gives RJ' = 1 for each 
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of P patterns is T P ,  and hence the probability that none of the 2N configurations 
gives RU = 1 for each of these pattems is 

(3.18) 1 - ( y p ) = ( 1 - 2 -  P ) aN . 
If this expression is inserted in (3.17), the result when N is large is 

(3.19) 

. 
Thus for this model, a , ( N )  converges to 1 with a 1 / N  correction. This will be 
compared with more complicated models in 54 below. 

3.1.3. The low-femperafure phase in toy model A. In the low-temperature T < T, 
phase, only a small number of configurations near the ground state need to be 
considered. The number of configurations at each energy E is given by a Poisson 
distribution with average (N( E)) and the explicit dependence of this average on E, 
(3.7), can be approximated by an exponential, 

(N( E ) )  = A(E-Ee) (3.20) 

where 

A = e lPC - - (a - E,)/% (3.21) 

and Ec, the value of E where (N( E)) is 1, is given by 

(3.22) 

Of course N( E) is only defined when E is an integer, and the value of Ec, (3.22), 
which makes (3.20) a good approximation for E near E, will, in general, not be 
integer. The tendency of the fractional part of E, to oscillate as N and P vary thus 
gives rise to oscillations in certain properties of the ground state, as we shall see. 

The fact that the N( E) are independent Poisson variables means that the prob- 
ability that the ground state has an energy E and is n-fold degenerate is given by 

(3.23) 

from which it follows that the average ground-state entropy is given by 

(3.24) 

Here the lower limit -CO rather then 0 for E produces a negligible error (expo- 
nentially small in N ) .  Changing E, by an integer obviously leaves this expression 
unchanged (alter the dummy variable E by the same amount). On the other hand, 
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as is easily seen if one does the sum numerically, S depends on the fractional pan 
of E=, and thus S oscillates as a function of N and P. The average ground-state 
energy shows similar oscillations superimposed on a smooth dependence on N and 
P. We have looked for similar effects in our numerical studies of the true model A 
($4) but have not seen anything definite. 

The exponential approximation, (3.20). is also useful in an analysis of the low- 
temperature properties of the random energy model [33, 341. The main difference 
is that in the latter E can take on any real value, and is not restricted to integers. 
As a consequence the random energy model always (with probability 1) has a non- 
degenerate ground state, whereas toy model A can have a degenerate ground State 
leading to a finite (order 1, not order N) average ground-state entropy. Both models 
also exhibit macroscopic fluctuations in the magnetic susceptibility, as defined and 
discussed in appendix 1. 

3.1.4. Finite-she flects in toy model A near the freezing temperature. Finite-size effects 
round the singular behaviour at a phase transition. These can be computed explicitly 
for toy model A for T near the freezing temperature Tc, with 01 > 1, and the results 
will be of use in discussing our simulations of the real model A in $4 below. 

dominates the growth of 
(N( E)) as E increases, which justifies the exponential approximation (3.20). These 
two effects become comparable for T = T,, so that (3.20) is no longer adequate. 
However, it suffices to expand (N( E)) to second order in E - E, yielding a Gaussian 
approximation: 

In the low-temperature phase, the decrease of 

( E -  E, ( E -  E,)’b) 
N (N( E ) )  = e x p  - - 

Tc 
(3.25) 

with 

- 1 = I n  (7) a - €  and b = l ( L  2 a - cc +’). EC (3.26) 
Tc 

Once again, we make use of the fact that N (  E) can be treated as independent 
random variables with a Poisson distribution corresponding to the average (3.25). The 
average of the logarithm of the partition function can he obtained using 

(3.27) 

where independence of the N( E) (see also appendix 2) leads to the expression 

When T - T, is of order l/a, one can replace the sum by an integral over 
‘p = (E  - E C ) / O ,  and, as shown in appendix 2, for the value of t of importance 
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for the integral (3.27), only the 9 > 0 part gives a significant contribution, and the 
term in the final parentheses in (3.28) can be replaced with - te-EIT,  leading to 

and hence 

The result is identical to that obtained in the random energy model with a continuom 
distribution of energies [34], due to the fact that contributiom come from energies 
within the order of fl of E, so the effects of discreteness are washed out. 

The specific heat per coupling can be computed from (In Z)  and is given, again 
for T - T, of order 1 /fl, by 

where 

(3.32) 

Because this is a function of f i (T;’  - T I ) ,  the curves of c ( T )  corresponding to 
different values of N all cross at T = T, at a value 

x - 2  1 
c(T,) = -- 

?r 2bT: 
(3.33) 

which is just (T - Z ) / T  times the discontinuity in c at T, in the N + w limit, where, 
using (3.13) and (3.14), one finds 

c(T,-) = 0 .  
1 

2bT: 
e( T z )  = - (3.34) 

Thus for the toy model, the crossing of the specific heat curves for different s u e s  
gives a good criterion for T,. 

3.2. Definition and solution of toy model B 

In model B with king patterns and binary couplings, let the ‘teacher’ be the configu- 
ration { j i } ,  and consider a ‘student’ {Ji) which has n of the N couplings identical 
with the teacher, that is, 

(3.35) 

Assuming for convenience that the first n components are identical, one has for any 
pattern Sf the result 

cjjS: = Y + Z Z J j S f  = Y  - 2  (3.36) 
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where Y represents the sum over 1 < i < n, and 2 that for n + 1 < i < N .  The 
probability p ,  that the teacher and the student give the same output, (2.1), for a 
randomly chosen pattern is the same as the probability that (Y( > (21, which is easily 
shown to be 

where e[. . .] is 1 when its argument is positive and 0 othenvise; the argument is never 
0 when, as we shall assume, N is odd. Note that pa = 0, p N  = 1 and 

P N - n  = - P n .  (3.38) 
One can also show that the p are equally in pairs: p ,  = p 2 ,  p ,  = p,, etc, which 

follows from the fact that (2) = ("i ' )  + (21;). When N is large and 

n = I N  
one finds [18] 

i t 2  2 
p ,  E ~ ( z )  = - t an -  

R 

(3.39) 

(3.40) 

With P randomly chosen patterns and n given by (3.39, the probability Pn( E) that 
the configuration { J i )  has energy E is given by 

P,(E) = ( g )  P , r E ( l  - P , P .  (3.41) 

In toy model B, one divides the 2N configurations into sets of (f)  configurations, 

cording to the distribution (3.41). Consequently the average number of configurations 
with energy E is given by 

3 < 4 ,-q, and wnfigurdiions in each sei iaii~omiy =signed energies aG 

(3.42) 

wnicn is iaenticai to ( N ( E ) )  for the true moaei. For eacn E in the intervai 0 < 
E < P, Ntoy( E) has, approximately, a Poisson distribution, and this is also the case 
for N,,,(O) - 1 and N,,,(P) - 1. And, unlike the true model, Nty,,(E) coincides 
with (N(E)) whenever the latter is large. This makes it possible to compute the 
partition function in the large-N limit, 

-- In 2 toy - ,rranl--(l /, -z);fi(i -+)  - 2:f iz+ .lfiir(+) + ( I - ~ ( ~ ) ) ~ - ~ ! T ; ]  
N z 

(3.43) 
where c2 = P / N  and ~ ( 1 )  is defined in (3.40). For T 2 0 the right-hand side 
always has a local maximum at I = 1 (corresponding to the ground state E = 0) 
and as T decreases this eventually becomes the absolute maximum at a first-order 

overlap with the teacher, 21-  1, jumps discontinuously to one, where they remain for 
the whole low-temperature phase. For finite N these discontinuities will be rounded 
out, and one expects the energy (or entropy) against temperature curves to intersect 
in a manner similar to  the heat capacity curves for model A. 

phase transition where the entropy and the energy fa!! d&wntinuous!y to zeroj md_ !he 
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3.2.1. Critical capaciv of roy model B. The critical capacity for model B can be 
determined in a manner analogous to that for model A: one considers all 2 N  - 1 
'student' configurations and as each pattern is added, those configurations which do 
not give the same answer as the teacher are eliminated, until with P. + 1 pattem 
there are none left. Equations (3.15) and (3.17) apply once again where (up) is the 
probability that for P randomly chosen patterns, at least one student gives the same 
answer as the teacher. 

For toy model B, the probability that all the students fail, 

n=O 

is just the product of the probability of failure for each student. Thus one has 

m . m  

where 

(3.44) 

(3.45) 

For a plot of a , ( N )  against 1 /N see figure 5 below. As N tends to infinity, a, (N)  
tends to 1.448, the upper bound for model B derived in [18]. 

4. Numerical studies 

4.1. Model A 

For the various versions of model A introduced in &? we have performed some 
numerical simulations which are presented in this section. Just as in spin-glass systems, 
the energy landscape is rugged [37]. This makes it difficult to use standard Monte 
Carlo techniques [22] since the system gets trapped in local minima. To avoid these 
problems, we have used exact enumeration-that is, we calculate the energy for 
each of the 2N configurations { J i ) .  The obvious disadvantage of this approach is 
that one is limited to studying very small sizes so that analysis of finite-size effects 
is unavoidable. We have tested the replica theory [19] by looking at two different 
aspects: the critical capacity ac and the phase transition at finite temperature. 

To study the critical capacity we have measured the capacity a,( N) as a function 
of N as explained in 52. For the binary perceptron with Ising patterns, N took on the 
values 5,7,. . . ,19, while for the other models the simulations were carried out at 
all integer values of N between 5 and some maximum value. The method, in brief, is 
to choose a pattem at random and discard the configurations { J i )  which do not give 
the correct response. The process is repeated until no configurations are left; this 
occurs, by definition, after P, + 1 patterns have been used. The value ac( N) is then 
the average of P,/N for many samples. The number of samples used varied with 
size from 100000 for the smaller systems to 4000 for the largest systems. Figure 2 



Finite-size effects and bounds for perceptron modeh 4923 

shows a , (N)  against 1/N for ( a )  the binary perceptron with Ising and Gaussian 
patterns and for (b) the discrete spherical model with king and Gaussian patterns as 
well as the analytic calculation of a , (N)  for the toy model (shown on both graphs 
(a) and (b)). The error bars show the statistical errors in the mean calculated in the 
standard way. The data points are fitted with a best quadratic fit in 1/N as a guide 
for the reader. The simulations were performed using a combination of bit encoding, 
Gray code [21] and vectorization where appropriate. 

(a) Capacity of true models A (b) Capacity of discrete spherid modeis A 
4 Y  udh'l 

'.Y 

0.m , , , . , , , , , , 
0.0 0.1 0.2 

l/N 

FLym 2. Capacity curves r * , ( N )  against 1 f N  calculated for loy model A, and for 
(a) the binary and ( b )  the discrete spherical versions of model A with both king and 
Gaussian pattems. The details of the methods used to obtain these curyes are described 
in the t a t .  

The convergence of a , ( N )  as a function of 1/N seems to resemble that of toy 
model A in all cases. In the case of Gaussian pattems the results look as if they will 
extrapolate rather well to the predicted value of 0.833 for binary couplings and 0.847 

on the ordinate. The situation is more worrisome for the case of Ising patterns. For 
the discrete spherical couplings, the data cross those for the Gaussian patterns and 
look as if they could extrapolate to a higher value. For the binary couplings, it is 
hard to imagine that the data will extrapolate to a value as large as 0.833, although 
it may be closer to this figure than to the 0.75 estimated previously by the same 

and Gaussian patterns yield the same a, in the large-N limit, there must be very 
substantial finite-size effects for N larger than 20, and these cannot, of course, be 
excluded by our calculation. Another possible source of difficulty in the extrapolation 
is that oscillations with N could be present (see $3) but there is no firm evidence for 
this in our data for a,( N). 

Another prediction of the Krauth-Mezard theory [19! is that, for a > aci as 
one lowers the temperature, there is a complete freezing at a transition temperature 
T,. At that temperature the specific heat jumps discontinuously to zero and remains 
there for the whole low-temperature phase. 

In figure 3(a)  we show numerical results obtained by exact enumeration of the 

fnr the &$rpfp sphpripl! Pasp, c . p s p  .&?!.e. srp i.&cat.n_ ss snrl ir A' r.-m.-rtiv,=hr ~-"~-~-.".,, A - 

metho!! !!8j!. If one accepts !he idea, based on the rep!im ca!cu!ation; that !rbg 
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specific heat per coupling at L\ = 2, for model A with Ising patterns, together with 
the replica prediction (broken curve). Because the enumeration method prohibits 
the study of large systems, our results are limited to N < 21. For each sample we 
compute the degeneracy of energy levels N(  E) and use these histograms to produce 
the specific heat curves for different temperatures. For the true model 5000 samples 
were used. The data points show the calculated average values with the usual sample 
error estimates (the curve through the points are fitted by a cubic spline). 

(a) Model A 
Swab heal 

(b) Toy model A 
ScedCheal 

0 6  ' 0 8  I D  
TMplabJrB 

Flgvre 3. 'he  specific heat per coupling against temperature at 01 = 2 for (a) the true 
mod4 A and @j the toy modei A for finite s~zes ana with ine exact soiution jamiten 
CuNe). 

While at first sight our results might appear inconsistent with the replica predic- 
tions, a comparison with the simulation of toy model A in figure 3(b) shows a similar 
behaviour for systems of comparable size. In the toy model one can simulate much 
larger systems, because if the n/( E) are treated as random variables (53), and since. 
E is discrete, the time needed to simulate a sample of sue N is proportional to N 
rather than 2 N .  Thus in figure 3(b),  each curve is for a system twice as large as for 
the previous curve, whereas in (a) the largest system is only four times the size of 
the smallest. 

The finite-size specific heat curves for toy model A all cross at the transition tem- 
perature of the infinite-N limit. Those of the true model A go through a common 
point at a temperature slightly less than the transition predicted by the replica calcu- 
lation, although closer examination suggests a crossing point moving to slightly higher 
temperatures with increasing system size. Hence it is not implausible that were the 
simulations of much larger systems possible, the results would eventually approach 
the replica prediction. 

If for both models the specific heat at T, is discontinuous, as predicted by the 
exact solution for toy model A and by the replica calculation for the true model A, 
one expects the specific heat to satisfy the following finite-size scaling form: 

c , (T)  = F ( N - = ( T - T , ) )  (4.1) 
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valid for N large and T close to T,. It seems possible that the finite-size scaling is 
actually the same in both models (the same exponent I = f and the same function F) 
corresponding to the same universality class. This would be consistent with the fact 
that the crossing point in both cases is close to (1 -2/n) times the total discontinuity 
in the specific heat. 

However, there is at least one feature which seems to be different in the low- 
temperature behaviour of model A and toy model A, reflecting the existence Of 
correlations of the energies which are present in the true model. In the case of the 
toy model A we have seen that to describe the low-temperature phase one could 
replace the distribution of energies by an exponential distribution As a consequence 
one expects that the sample to sample fluctuations-defined as ((EZ) - (E)’)’/’, 
where the angular brackets denote average over samples-of the ground-state energy 
do not increase as N + 00. If the same picture were valid for the true model A one 
would expect the sample to sample fluctuations not to increase with N .  We obsem, 
however, that these fluctuations do in fact increase with N typically like N’l3  (this 
behaviour is similar to that found in the Sherrington-Kirkpatrick spin-glass model (36, 
371). This is shown in figure 4 the curves are best fits of the form UN’. This means 
that the picture of an exponential distribution has to be modified, one possibility 
being that the position of the exponential distribution shifts from sample to sample. 

0 PM-2 
0 Pm.4 

- A PIN-8 . PIN-16 

3 .  

2 .  

1 .  

0 1 .  . , , . . . - 
0 2 4 6 8 1 0 1 2 1 k ~ 6 1 & ~ 2 2  

N 
Figure 4. Sample to sample fluctuations of the energy plotted against N for model A. 

The susceptibility and its sample to sample fluctuations were also studied. Unfor- 
tunately due to the limited sizes of systems that could be examined and the subtle 
nature of the transition (i.e. a cusp), these quantities did not prove to be good indi- 
cators of the transition, although they were consistent with a spin-glass-like transition. 

4.2. Model B 
We have repeated the numerical calculation of the critical capacity and of the thermal 
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Figure 5. Capacity CUNB e , ( N )  against 1 / N  calculaled for toy model B, and for 
the binary and the discrele spherical versions at model B with both king and Gaussian 
patterns. The details of lhe methods used to obtain t h m  cuwes are described in the 
text. 

properties in the case of model B. 
In figure 5 we show the critical value a , ( N )  against 1 / N  for various versions 

of model B. The critical capacity was calculated using the method described in $3, 
(3.45). In the case of the discrete spherical model with Ising patterns it is possible 
to have a situation in which two configurations are never separated by any of the 
2 N  possible hyperplanes, and consequently the sum in (3.45) diverges. To avoid this 
problem we replace the definition of (P,), in this case, by the value of P where 
(yp) =. i, as determined by linear interpolation between successive integer values of 
P. As m figure 2, the error bars show the statistical errors in the mean. 

In the case of the discrete spherical model with both Ising and Gaussian patterns, 
it is easy to imagine an extrapolation of the curves to the value of irg = 1.197 
obtained in $2 on the basis of Gardner's replica calculation, and indicated on the 
ordinate. On the other hand, the results with binary couplings look as if they will 
extrapolate to distinct values substantially above the replica prediction of uR = 1.245. 
However, the curve for toy model B, (3.45), shows large finite-size effects, and were 
an extrapolation based on the part corresponding to N < 20, the estimated a, 
would be near 1.6 instead of the correct 1.448. If a similar effect is present for binary 
couplings, it is not difficult to imagine an extrapolation of both the king and the 
Gaussian cases to a value near the replica prediction. 

the calculation for the 
toy model B as well as the replica calculation (26, 271 for the true model B predict a 
first-order phase transition. For toy model B, the first-order phase transition appears 
as a jump in the energy curve, for example, as a function of the temperature. For 
finite systems this jump is rounded and the curves corresponding to different S h S  

all cross at the transition temperature T, as seen in figure 6(b). The cuwes for the 

" l ing to thermal properties we note that, for a > 
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true model B are shown in figure 6(a) .  We observe that the same crossing behaviour 
seems to hold (although once again we are limited to examining small systems). 

(a) Model B (b) Toy model B 
Energy h W  

* 1  

Figure 6. The energy per coupling against temperature with 01 = 4 for (U) the true 
model B and ( b )  the toy model U. 

(a) Model B 
Speak heal 

1.0 , 

(b) Toy model B 
Spenfoo heat 

F@m 7. The specific heat per coupling against temperature with (I = 4 for (a) Ihe 
true model B and ( b )  the toy model U. Nole the diiTerence in scales. The apparent 
negative specific heal is an artefact of the cubic spline cuwe filling. 

As well as a jump in the energy a first-order transition gives rise to a delta peak 
in the specific heat. For small systems this peak becomes rounded. Figure 7 shows 
the curves for the specific heat for various different system sues for (a) the true 
model and (b) the toy model. For the true model the peak is apparent but not very 
pronounced. In the toy model where much larger sized systems can be studied the 
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peak is very much clearer. Notice that there is an apparent common crossing point 
for the true model around T = 1.5, but comparison with the toy model &where 
the crossing points are observed to move towards higher temperatures-suggests that 
this is unlikely to be a true futed point but is an artefact of studying systems very 
close to each other in size. 

5. Bounds for aA ~~ and ag - 

Let aA and aB be the values of a for the A and B transitions in the case of binary 
couplings. As the number of particles is ZN and the number of cells is ZP, it follows 
that 

aA b b aB (5.1) 

(for a > 1, the number of cells is much larger than the number of particles, and 
so most cells must be empty, whereas for a < 1 the reverse is true, and thus most 
particles must be in cells which contain other particles). The first inequality in (5.1) 
also follows, as noted in $3, from the fact that the critical a for toy model A is an 
upper bound on aA. An additional bound 

ag < 1.448 

was obtained by Gardner and Derrida in [18, equation (26)) It is also a consequence 
of the fact, also pointed out in $3, that the right-hand side of (5.2) is the critical a 
for toy model B. Note that (5.1) and (5.2) hold both for Ising and Gaussian patterns. 

est.&!s,!: pa" 
additional inequalities: 

the m e  of C.r;..ias @t !sing) pztterps it 2 pass;h!- 

(5.3) 

where BA and 6, are the values of Q for the A and B transitions for discrete 
spherical couplings. In fact, the values of BA and 6, are determined by properties 
of the distribution of cell sizes ($2). and Gardner's calculations [6, 181 using replica 
methods, yielding the values 

6, = 0.847 6 ,  = 1.197. (5.5) 

'Ib be sure, one must always be cautious regarding the results of replica calculations, 
but assuming (5.5) is correct, the bounds (5.3) and (5.4) are a substantial improvement 
over (5.1). A comparison with our numerical estimates has already been made in $4 
above. That 6, is close to the value aA obtained by alternative methods was noted 
in iiSj. 

In addition, the arguments leading to (5.3) and (5.4) are of interest because Of 
their general character: they employ no property of the binary couplings apart from 
the fact that there are ZN of them. That is, 6, is an upper bound on aA for any 
model with Z N  configurations and Gaussian patterns, and similarly B, is a general 
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lower bound for ag. This generality is reflected in the statement of the two theorems, 
A and B below, in which (5.3) and (5.4) are established. Furthermore, in order to 
emphasize their geometrical character, the theorems are expressed in terms of two 
hypotheses, HA and HB, the latter in two versions, related to the distribution of cell 
sizes introduced in $2. 

In HA and HB, and in the theorems, we assume that a sequence of values P 
and N is given, tending to infinity, with PIN tending to a specified value a. The 
notation Pr(C) stands for the probability of the event E. Volumes of cells, denoted by 
U ,  correspond to the normalization (2.6). The hypotheses and theorems apply equally 
well to any cell R = { R p } ,  by symmetry of the probability distribution or  measure for 
S, denoted by v( S), even though it may be convenient to think of a particular cell, 
say R = 1, which means R” = 1 for all p. Hypothesis HB is stated in two versions 
which are actually equivalent because of the spherical symmetry of v( S); the reason 
for doing so is to make explicit the point where this symmeoy enters the argument, 
and thus the gap which has thus far prevented us from extending the argument (5.4) 
to the case of king patterns. 

Hypothesis HA.  Let U be the volume of the cell R = 1. Then there are positive 
numbers E and q, depending on N and tending to zero as N -* 00, such that 

Hypothesis HBI. Given any point specific J on the sphere (2.4), let U be the volume 
of the cell which it occupies. (The probability that J falls on the boundary between 
two or more cells is zero.) Then there are positive numbers e and q, depending on 
N and tending to zero as N --t 03, such that 

Hypothesis HB2. There is for each N at least one specific point J on the sphere 
(2.4) for which (5.7) holds. 

Note that in both HB1 and HB2 the point J remains tixed while S varies. Also note 
that HA and the pair HB are independent in the sense that the values of a where one 
holds have no necessary relationship with the values where the other holds. Clearly 

that the two are equivalent, for the probability is independent of the point chosen 
(see appendix 3). 

Theorem A .  (a) If for some a, HA is satisfied, and if for each N ,  C, is some 
arbitrary collection of 2 N  points on the sphere (2.4), then, given that v( S) is invariant 
under rotations, the probability that the cell R = 1 (or any other particular cell) 
contains at least one point from C, tends to zero as N - 03. 

(b) For a > BA (transition A for the discrete spherical couplings), condition HA is 
satisfied. 
(c) In the case of Gaussian patterns, B A  is the infimum of those a for which HA 
holds, and consequently a,, < B A .  

Note that part @j of the theorem does not require the sp’nericai symmeiry of .(Si, 
so it is also valid for the case of Ising pattems. 

In stating theorem B, the following terminology is helpful. A member of a 
collection CN of points on the sphere (2.4) is said to be isolated for a given set of 
hyperplanes S if it falls in a cell which contains no other points from C,. 

P r ( v  2 ~ 2 - , )  < q. (5.6) 

P r ( v  < 6 - l ~ ~ )  < q. (5.7) 

HB! L!.?..p!bS HB?, 2nd !he Spheric2! SymleLy cf 2:s: fer G2!ssim p!mes Lq!ts. 
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Theorem B. (a) If for some a, HB1 is satisfied, and C ,  is for each N some arbitrary 
collection of ZN points on the sphere (2.4), then the fraction f of isolated points in 
C, tends to zero with probability one as N + m. That is there are positive numbers 
C and fi tending to zero as N + m such that 

Pr(f 2 e )  < il. (5.8) 

(b) For a < B, ~ (transition B for discrete spherical couplings), . ~. condition HB2 is 
satisfied. 
(c) In the case of Gaussian patterns, &, is the supremum of those a for which HB1 
(equivalent to HB2) is satisfied, and consequently aB 2 B,. 

Note that neither (a) nor (b) require the spherical symmetry of u(S),  whereas it is 
needed for (c). We shall now indicate the intuitive ideas, which are actually quite 
simple, underlying the technical proofs of theorems A and B, which are in appendix 3. 

'Ib begin with (a) of theorem A, HA tells us that the volume of a typical cell-or 
the typical volume of a particular cell-is smaller than z Y N .  This means that the 
average number of points from the collection C ,  of 2, points which fall in the cell is 
z or less; the actual location of the points in C ,  is irrelevant, because the distribution 
v ( S )  is spherically symmetrical. The only way that this average can be small is if the 
typical cell is empty, which is the same (by symmetly among the cells) as saying that 
a particular cell is ty i d l y  empty. For part (b), note that a > 6 ,  means that if C ,  
is a collection of Z$ppoints chosen at random on the sphere, a typical cell will be 
empty. Now because the points are chosen at random, the average number in a cell 
of volume U is ZNv, and because the distribution of the number of points in a cell 
of a given sue  is (essentially) Poisson, the only way a typical cell can be empty is if 
the average number of points from L', which it contains is smaii, meaning that Its 
volume is small. Hence a > BA implies HA. 

Finally, part (c) is a consequence of noting that Q > 6 ,  implies HA, but HA, 
by part (a), implies a 2 BA,  making 6 ,  the lower limit of the a for which HA 
holds, and thus-applying (a) to the case where C ,  is the collection of hypercube 
vertices--an upper bound on aA. 

Tne intuitive idea behind part (a j  of theorem B is as foiiows. Given any coiiection 
C, of ZN points, hypothesis HB1 implies that most of them fall in cells which are 
relatively large, of volume greater that e-'2-,. But as the total volume of all the 
cells is 1, there are at most €2, of these large cells, and it is obvious that among 
the points falling in the large cells, at most eZN - 1 of them, a small fraction of the 
total, can be isolated. (Given a hotel with m rooms and M >> m guests, it is clear 
that only a small fraction of the guests can be in rooms by themselves.) 

For part (b), the reasoning is analogous to that of the same part of theorem A. 
For a < B,, an extremely large fraction of the 2, points chosen at random on the 
sphere fall in cells containing other points, a situation which is only possible (given 
Poisson statistics) if the average number of points in those cells containing at least 
one point is large, corresponding to  the fact that the cells themselves are large. One 
rr,c;rauy GhLuJImIIcs a ICSUIL WI11SI1 6 aslualry s u l I I c W l l i i 1  sl1urlgG;r lllall Icyuur" &"I 

HB2. However, to obtain HBl, and thus conclusion (c) of the theorem by reasoning 
entirely analogous to that employed at the corresponding point in theorem A, the 
spherical symmetry of U( S) is important, which is why the argument fails for king 
patterm. 

.L^-^L_. -".",.,:"Le" -~~ ..,. _..L:̂ L . ~-...-,,.. ----...LA. _._^_"^_ .LA.. ---..:-..a c-. 
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6. Conclusion 

In this paper we have extended previous work on binary perceptron models in two 
directions. First, we have carried out numerical studies on systems of finite sizes 
using exact enumeration of states in order to extend previous estimates of the critical 
capacity aA and aB of models A and B, and to find the thermodynamic properties 
as a function of temperature, for both models. Second, we have introduced and 
solved a set of simplified models: the discrete spherical versions of models A and B, 
and the ‘toy’ models A and B. These simplified models are interesting because they 
provide bounds on the critical capacities of the original binary perceptmn models 
and in addition because the finite-size effects can be computed in the toy models and 
compared with our numerical studies of the real models. 

While the upper bounds on aA and aB provided by the toy models were known 
previously [18], those given by the discrete spherical models, an upper bound &A for 
aA and a lower bound on aB, are new. (In fact &La was calculated previousiy [19]; 
the fact that it is an upper bound is new.) They are also a noticeable improvement 
on previous values, assuming that the actual numerical values provided by Gardner’s 
replica calculation are correct. It seems likely that there are other contexts in which 
such discrete spherical bounds might be useful, in particular in cases where the energy 
function would be different (more complicated cost functions [38], other architectures 
[39, 401). So far as we know, there is no rigorous lower bound (greater than zero) 
on aA, and our efforts in this direction have proved futile. Finding a rigorous lower 
bound seems surprisingly difficult. 

The finite-size properties of the toy models turn out to be extremely useful in 
interpreting our numerical results for the temperature dependence of thermodynamic 
properties of models A and B in systems of finite size. By comparing the toy and real 
models, one can make a very plausible argument for phase transitions into a ‘frozen’ 
low-temperature phase with vanishing entropy occurring at a finite temperature: a 
continuous (second-order) transition for model A and a first-order transition for 
model B, provided a exceeds the corresponding critical capacity. Such transitions 
have been proposed on the basis of replica calculations by Krauth and Mkzard [19] 
for model A and by Gyorgyi 1261 and Sompolinsky, Tishby and Seung [27] for model 
B, but given the usual uncertainty about the limits of validity of replica studies, we 
think that our numerical calculations as interpreted with the help of the corresponding 
toy models provide an important confirmation. 

Our estimates of the critical capacities aA and aB based on numerical studies of 
small systems, while they have been extended to larger systems than previously studied 
(up to N cz Zl), are somewhat disappointing in that the finite-size corrections are 
still not very well understood and make it difficult to obtain any precise extrapolation 
to N = m. The numerical evidence for model A with Ising patterns taken by 
itself suggests an aA which is significantly less than that for Gaussian patterns, and 
although we cannot exclude the possibility that the difference is solely a consequence 
of finite-size effects, it is worth pointing out-that there are no completely compelling 
arguments for their equality in the N -+ m limit. 

The situation in the case of model B is, if anything, even worse. If one had only 
numerical evidence, one might plausibly suppose that king and Gaussian patterm give 
different values for aB,  and these well in excess of the replica estimate. However, 
the toy model B shows extremely large finite-size effects of a type which would make 
a reliable extrapolation based on a maximum N of only 21 out of the question. If 
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the real model has a similar behaviour, it is easy to imagine the curves of figure 5 
bending over for larger N and reaching the replica value. 

By contrast, the corresponding extrapolation for the discrete spherical versions of 
model A and B are consistent with a smooth extrapolation as N -+ 00 to the Er, and 
Er, expected from the replica calculations, and with results identical (in the same 
limit) for king and Gaussian planes. 

It seems clear that further progress in the direction of estimating critical capacities 
from the study of finite systems would benefit from a better understanding of finite- 
size eiTecis. 
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Appendix 1. Fluctuations in magnetic susceptibility 

In this appendix we consider fluctuations in the magnetic susceptibility x (suitably 
defined) for toy model A and for the random energy model [24], in their low- 
temperature phases. 

'Ib begin with, we suppose that 2 N  configurations, labelled by subscripts a and b, 
have energies E, which depend on the sample, and thus the Boltzmann weights 

(Al.1) 

are random variables. The configurations are then independently assigned random 
magnetizations Ma between -N and N according to the probability distribution 

(A1.2) 

For large N, Malm is, to a good approximation, a Gaussian random variable with 
zero mean and unit variance, which means that 

(A1.3) 

while Ms and Mb for a # b are uncorrelated. Note that Ma and m7,, are indepen- 
dent random variables. 

The susceptibility x is defined in terms of the thermal fluctuations in the magne- 
+:..n+:nn 
.-.I"..( 

(A1.4) 
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and is, of course, sample dependent. Its average and variance are easily calculated 
using (A1.3); one finds: 

(A1.5) 1 1 (x) = 5; Crew,, - (W3l = T(' - ( y z ) )  
D 

where the variables Yk are defined by 

CE N( E)e-kE/T 

[ E E  N( E)e-E/T]' 
Yk = 

(A1.7) 

(A1.8) 

where N( E) is the number of configurations of energy E .  Using the integral repre- 
sentation 

(A1.9) 

along with the fact that in the case of toy model A and the random energy model 
the N( E )  are independent Poisson variables, one arrives at the expression 

(yk) = r(k) Jm 2"' ( x ( N ( E ) ) e x p (  - k E / T  - 
E 0 

A similar procedure can be applied to obtain averages of moments of Y k  or the 
products Yk& etc. 

We now consider the low-temperature phase T < T,, where the exponential 
approximation (3.20) for (N( E)) can he employed for toy model k The resulting 
expressions are rather complicated. They simplify considerably if one considers the 
random energy model, in which E is a continuous variable not restricted to integer 
values, and where at low temperature the N( E) are again independent Poisson 
variables, with the average number of configurations with an energy between E and 
E + A E given by 

(Al. 11) ( N ( E ) )  = A E  e(E-Ec)'Tc. 

In this case one finds 

(A1.12) 



4934 B Derrida et a1 

and 

and thus 
1 (x) = - T, 

(A1.13) 

(A1.14) 

(A1.1.5) 

Hence for T < T, in the random energy model there are macroscopic (order 1 )  fluc- 

remains constant. In toy model A, there are also macroscopic fluctuatiom in x for 
T < T,. However, in addition (x) diverges as T goes to zero, due to the fact (not 
true for the random energy model) that the ground state can be degenerate. 

:;r:b.. & the .....p!'hi!ig fram &amp!p s.mp!e, while the SVeRgP $ugq!&fl i ty  

Appendix 2. Discussion of (3.28) and (3.29) 

If one inserts (3.28) in (3.27). the result is a value of -CO for (In Z) due to the 
fact that as t + m the right-hand side of (3.28) does not go to zero, but tends to 
an exceedingly small constant. This is a spurious effect arising from the fact that 
the Poisson approximation allows N (  E) to be simultaneously 0 for all E (yielding 
Z = 0 because there are no configurations) with a n  astronomically small probability. 
The cure is simply to cut the integral off for some iarge vaiue of t; as shown in the 
analysis below, the result is essentially independent of the cut-off in a suitable range. 

The justification of (3.29) is subtler because of the fact that one must show that 
it is adequate for all the t values which dominate the integral (3.27), as well as for 
derivatives of this integral with respect to temperature, for the latter are used in $3 
for calculating the beat capacity. For this purpose it is convenient to replace t with 
the variabie 

T = W.1) 

where p = 1/T and p, = 1/T, in what follows. Then (3.27) becomes 

where 
m 

Z ( T )  = film d p [ l  - exp(-re -fib)] ef iuPc-bu'  W . 3 )  

results from replacing the sum over E in (3.2%) with a corresponding integrai. iu'oie 
that Z ( T )  is monotone increasing, r ( 0 )  = 0, and its derivative 
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at T = 0 is an upper bound on I ( (  T )  for all T > 0. In the following analysis we wiN 
always mume that I@ - &I is a f  mosf of order l / f l .  Given this assumption, ~'(0) 
is of order a. 

It will be convenient to split the integration interval in (A2.3) into two pieces, 
'P 2 'P,,(T) and 'P < ~ O ( T ) .  where 

i.e. the value of 1p where 

We then use the approximation 

to obtain z( t) as (approximately) the sum of 

and 

In fact, this sum is an upper bound on ~ ( r )  because the right-hand side of (A2.7) 
is always larger than the left-hand side for r 2 0. Setting b = 0 in (A2.9) produces 
an upper bound 

z - ( T )  = p;lefivdr)oc = p;l.o./p (A2.10) 

for f - ( s ) ,  and we will later show that this is small compared with (A2.8). 
Ib estimate the error involved in using the approximation (A2.7) in the integral 

(A2.8), note that as soon as q exceeds qo by (In N ) / f i ,  re-moq will be at most 
N - 8 .  Hence the fractional error from this source is of order (In N ) / f i ;  remember 
that p, - p is at most l/V%. A further error of this same magnitude will occur if 
the lower limit in (A2.8) is set to zero yielding 

z+(t) = r f i ~ ,  (A2.11) 

with 

Jo = 1- dip expIfi(P, - PIU, - b d l  (A2.12) 

provided I1po(r)l is at most of order (In N ) / f i ,  a condition which holds provided 

~ - 9  s < NQ (A2.13) 



4936 B Derrida et al 

for some q and Q positive and not too large. 
In order that (A2.10) be small compared to (A2.11), noting that Jo is of order 

1, r must not be too small, assuming p > P,, or too large assuming p < p,. The 
crossover where the two are comparable comes at 

(A2.14) 

which means that we can always choose q > 1 /2  and Q > 0 in (A2.13). We conclude 
that in the range (A2.13), z ( r )  can be replaced by z+(T) ,  (A2.11), with fractional 
errors which go to zero with increasing N, and hence the right-hand side of (A2.2) 
is given by ln(Jom) plus correction terms going to zero with N ,  provided the 
contribution from r outside the limits (A2.13) also go to zero with N .  

The bounds 

0 < z ( r )  < rz ' (0)  (A2.15) 

(see (A2.4)), together with the inequality 

0 < (e-"' -e-* ' )  < ( b -  a)r  (A2.16) 

valid for any 

O Q a Q b  r>O (A2.17) 

can be used to bound the part of the integral (A2.2) corresponding to 0 Q r < N-q 
by a quantity of order N-q-'/', which goes to zero for q > 1/2. As for r > N Q ,  
note that the contribution from e-r is of order exp(-NQ), and that from e - z ( r )  is 
even smaller for any reasonable cut-off (needed for reasons noted in the introductoly 
paragraph). 

Bounds on the errors in calculating (In 2)  using the approximation (A2.11) for 
z ( r )  are not necessarily valid for its derivatives; note that In Jo, (A2.12), is of order 
1, and its serand derivative with respect to 0 is of order N .  However, the integrals 
obtained by differentiating the right-hand side of (A2.2) one or more times always 
contains an e - z ( T )  in the integrand, and thus the key estimates needed to show that 
the error term are relatively small are already contained in the preceding discussion. 

Appendix 3. Proof of results in $5 

We present here the proofs that HB2 implies HBl if the probability distribution U( S) 
has spherical symmey,  as well as the detailed proofs of theorems A and B. 

A3.1. Equivalence between HBI and HB2 
By spherical symmetry of v we mean the following. Let R be an element of the 
rotation group in R N ,  i.e. an N x N orthogonal matrix, and let 

RS = {RS ' )  ('43.1) 

be the set of hyperplane normals obtained by applying R to each S@ for 1 Q p < P. 
Then U is an invariant probability measure in the sense that 

U( R S )  = U( S). ('43.2) 
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Note that in the case of Gaussian pattems, (A3.2) holds for an arbitraly rotation, 
while for king patterns it is only true for the subgroup of rotations which map all 
hypercube vertices into other hypercube vertices. 

Let xR( J ,  S )  be 1 if the point J on the sphere (2.4) falls in the cell R = {R’) 
for the set of hyperplanes S, and 0 otherwise. Clearly the properv of being in a 
given cell is preserved if both J and the hyperplanes are subject to the same rotation, 

X R ( R J ,  RS) = xR(  J ,  S )  (A3.3) 

as is also the volume of the cell, 

V R ( s )  = J P ( J ) X ~ ( J ,  S )  = V R ( R S )  (’43.4) 

where g( J) denotes the spherically symmetric normalized measure. 
Thus if hypothesis HB2 holds, so that (5.7) is correct for one point J on the 

sphere, the invariance of U ,  (A3.2), means that (5.7) holds for any other point J‘ ,  
as there is always some rotation R such that J’ = RJ.  Consequently (A3.2) implies 
the equivalence of HB1 and HB2. 

A3.2. Proof of theorem A 

Theorem A is proved as follows. For part (a), let E he the event that some J from 
the collection C, falls in the cell R and that this cell has a volume uR < q,. Its 
probability is 

= V ( S ) X R ( J ,  s)e(vo - u R ( S ) )  J 
= / U ( S ) X ~ ( R J , S ) ~ ( ~ ~  - V R ( s ) )  (A3.5) 

where e(z)  is 1 for I 2 0 and 0 for z < 0, and the second equality follows 
from (A3.3), (A3.4) and (A3.2). If (A3.5) is integrated over all rotations R using 
normalized Haar measure, the effect is the same as integrating over J with the 
measure p ( J ) ,  see (A3.4): 

Pr(E) = u ( S ) v R ( S ) B ( u 0  - u R ( S ) )  < u o P r ( v R  < uo) .  (A3.6) J 
If nR is the number of points of C, which fall in the cell R, we can write 

P r ( n R  > 0 , u R  < uo)  < 2 N  Pr(E) < 2NuoPr(uR < v o )  (A3.7) 

where the first inequality comes about by noting that the probability that nR is 
positive, is certainly not larger than the average value of n R ,  and the latter, with 
vR < vo, is 2 , P r ( E )  since (A3.6) is independent of the point J in the collection 
C,. What we are interested in is, of course, 

P r ( n R  > 0) = P r ( n R  > O’vR < ~ 0 )  + P r ( n R  > 0 , v R  > ~0). (A34 
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If U,, = ~ 2 - ~ ,  then (A3.7) tells us that the first term on the right-hand side of ('43.8) 
is no bigger than c, while (5.6) gives 1) as an upper bound on the second term. Thus 
P r ( n R  > 0) is less than c + 7, which tends to zero as N - m, by hypothesis Hk 

For part (b) of theorem A, note that a > &A means that for any given cell R, 
Pr(nR > 0 )  for the discrete spherical model goes to zero as N -+ 00, and thus given 
some c > 0 we can be sure that 

P r ( n R  > 0) < c 2 / 2  ('43.9) 

for all N sufficiently large. Since for this model the 2 ,  points are chosen at random 
on the sphere, we have ., 

('43.10) Pr(nR > 0 1 ~ ~ )  = 1 - (1 - uR)  2 N  

for the conditional probability of a nonempty cell given a cell volume uR. 

ignoring cases with uR < cZ-,, we obtain the inequality 
Noting that the right-hand side of (A3.10) is monotone increasing in uR and 

P r ( n R  > 0 )  2 [I - ( 1  - E Z - ~ ) ~ ~ J P ~ ( ~ ~  2 t2wN). 

(1 - € 2 - N  ) 2 N  y e - '  

('43.11) 

Combining (A3.9) with (A3.11), and assuming N is large enough so that 

(A3.12) 

and that t is less than 1, we obtain 

Pr (vR 2 t2-,) < c (A3.13) 

which is to say, (5.6) with 1) = E. 

Part (c) of theorem A is a consequence, as noted in $5, of first choosing C, 
in part (a) to be the Z N  discrete spherical couplings, and then the Z N  hypercube 
vertices. 

A 3 3  Proof of theorem B 

For theorem B, part (a), it is convenient to introduce random variables I ,  and K,, 
1 < j < 2,. associated with the points of the collection C, in the following way: It 
is 1 if point j is isolated and zero otherwise: I(, is 1 if j is in a cell with volume 
U < ~ - ' 2 - ~ ,  and zero otherwise. The inequality 

(A3.14) 

where f is the fraction of isolated points, comes about by noting that either j is in 
a 'small' cell where IC. = 1, whence I, < IC,, or it is in a 'large' cell with K,  = 0. 
As the total volume of all cells is I ,  there are at most ~2~ isolated particles in large 
cells. 

I 

Upon averaging (A3.14) and using (5.7) we conclude that 

(f) < E + 1). (A3.15) 
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As f is non-negative, for any c > 0, 

and thus (5.8) holds with 

- -  
E = q = C = fi. (A3.17) 

Note that if C, is the collection of hypercube vertices and U( S) is invariant under 
all rotations, or at least a subgroup large enough to map any hypercube vertex into 
any other (as is the case for king patterns), the fact that ( I , )  does not depend on j 
yields the additional result that the probability that any bypercube vertex is isolated 
does not exceed e + q. 

For part (b) of theorem B, note that 01 < LiB means that with C, a set of Z N  
points chosen at random on the sphere, the probability that a particular one, say 
j = 1, is isolated goes to zero as N + CO, and thus for some small e > 0 we can be 
sure that 

( I , )  < 4 e e - 1 / e  (A3.18) 

for all N sufficiently large. Given that this point falls in a cell of volume U, the 
probability that it is isolated is 

(1 - w ) Z N - 1  (A3.19) 

as the remaining 2 N  - 1 random points lie outside the cell. Since (A3.19) is monotone 
decreasing in U, a lower bound for ( I I )  is 

(II) > ( 1  - e - ' 2 - N ) 2 N - ' P r ( u  < e - 1 2 - N )  (A3.20) 

if we simply ignore cases with U > ~ - ' 2 - ~ .  Combining (A3.18) and (A3.20), and 
making the appropriate exponential approximation (always assuming N is not too 
small), yields the inequality (5.7), and thus the hypothesis HB2, with 1) = e .  

Part (c) of theorem B is established by the same type of argument as for part (c) 
of theorem A. 
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